OSLI Retina

December 2016

Issue link: http://osliretina.healio.com/i/761988

Contents of this Issue

Navigation

Page 14 of 95

December 2016 · Vol. 47, No. 12 1085 Practical Retina by factors such as the central subfield retinal thick- ness, 26,27 sex, 26,29 and choroidal thickness. 26 CONCLUSION OCTA is a useful investigation that helps in the diagnosis, monitoring, and management of common retinal diseases. Its role will increase as advances con- tinue to be made in imaging techniques and process- ing algorithms. REFERENCES 1. de Carlo TE, Romano A, Waheed NK, Duker JS. A review of opti- cal coherence tomography angiography (OCTA). Int J Retina Vitreous. 2015;1:5. 2. Chalam KV, Sambhav K. Optical coherence tomography angiography in retinal diseases. J Ophthalmic Vis Res. 2016;11(1):84-92. 3. Wang M, Zhou Y, Gao SS, et al. Evaluating polypoidal choroidal vas- culopathy with optical coherence tomography angiography. Invest Oph- thalmol Vis Sci. 2016 57(9):OCT526-532. 4. Inoue M, Balaratnasingam C, Freund KB. Optical coherence tomogra- phy angiography of polypoidal choroidal vasculopathy and polypoidal choroidal neovascularization. Retina. 2015;35(11):2265-2274. 5. Moult E, Choi W, Waheed NK, et al. Ultrahigh-speed swept-source OCT angiography in exudative AMD. Ophthalmic Surg Lasers Imaging Retina. 2014;45(6):496-505. 6. Coscas GJ, Lupidi M, Coscas F, Cagini C, Souied EH. Optical coher- ence tomography angiography versus traditional multimodal imaging in assessing the activity of exudative age-related macular degeneration: A new diagnostic challenge. Retina. 2015;35(11):2219-2228. 7. Kuehlewein L, Sadda SR, Sarraf D. OCT angiography and sequential quantitative analysis of type 2 neovascularization after ranibizumab therapy. Eye (Lond). 2015;29(7):932-935. 8. Kuehlewein L, Bansal M, Lenis TL, et. al. Optical coherence tomog- raphy angiography of Type 1 neovascularization in age-related macular degeneration. Am J Ophthalmol. 2015;160(4):739-748. 9. Tan CS, Ngo WK, Chen JP, Tan NW, Lim TH, EVEREST Study Group. EVEREST study report 2: imaging and grading protocol, and baseline characteristics of a randomised controlled trial of polypoidal choroidal vasculopathy. Br J Ophthalmol. 2015;99(5):624-628. 10. Tan CS, Ngo WK, Lim LW, Lim TH. A novel classification of the vas- cular patterns of polypoidal choroidal vasculopathy and its relation to clinical outcomes. Br J Ophthalmol. 2014;98(11):1528-1533. 11. Lim TH, Laude A, Tan CS. Polypoidal choroidal vasculopathy: an an- giographic discussion. Eye (Lond). 2010;24(3):483-490. 12. Tan CS, Lim TH, Hariprasad SM. Current management of polyp- oidal choroidal vasculopathy. Ophthalmic Surg Lasers Imaging Retina. 2015;46(8):786-791. 13. Tomiyasu T, Nozaki M, Yoshida M, Ogura Y. Characteristics of polyp- oidal choroidal vasculopathy evaluated by optical coherence tomogra- phy angiography. Invest Ophthalmol Vis Sci. 2016;57(9):OCT324-330. 14. Kim JY, Kwon OW, Oh HS, Kim SH, You YS. Optical coherence tomography angiography in patients with polypoidal choroidal vascu- lopathy. Graefes Arch Clin Exp Ophthalmol. 2016;254(8):1505-1510. 15. Wang M, Zhou Y, Gao SS, et al. Evaluating polypoidal choroidal vas- culopathy with optical coherence tomography angiography. Invest Oph- thalmol Vis Sci. 2016;57(9):OCT526-532. 16. Srour M, Querques G, Semoun O, et. al. Optical coherence tomogra- phy angiography characteristics of polypoidal choroidal vasculopathy. Br J Ophthalmol. 2016. pii: bjophthalmol-2015-307892. doi: 10.1136/ bjophthalmol-2015-307892. [Epub ahead of print] 17. Ishibazawa A, Nagaoka T, Takahashi A, et al. Optical coherence tomog- raphy angiography in diabetic retinopathy: A prospective pilot study. Am J Ophthalmol. 2015;4;160(1):35-44.e1. 18. Lee J, Moon BG, Cho AR, Yoon H. Optical coherence tomography angiography of DME and its association with anti-VEGF treatment response. Ophthalmology. 2016;123(11):2368-2375. 19. Couturier A, Mané V, Bonnin S, et al. Capillary plexus anomalies in diabetic retinopathy on optical coherence tomography angiography. Retina. 2015;35(11):2384-2391. 20. Hasegawa N, Nozaki M, Takase N, Yoshida M, Ogura Y. New insights into microaneurysms in the deep capillary plexus detected by optical coherence tomography angiography in diabetic macular edema. Invest Ophthalmol Vis Sci. 2016;57(9):OCT348-355. 21. Choi W, Waheed NK, Moult EM, et. al. Ultrahigh speed swept source optical coherence tomography angiography of retinal and choriocap- illaris alterations in diabetic patients with and without retinopathy. Retina. 2016. [Epub ahead of print] 22. Bhanushali D, Anegondi N, Gadde SG, et. al. Linking retinal micro- vasculature features with severity of diabetic retinopathy using opti- cal coherence tomography angiography. Invest Ophthalmol Vis Sci. 2016;57(9):OCT519-525. 23. Freiberg FJ, Pfau M, Wons J, Wirth MA, Becker MD, Michels S. Optical coherence tomography angiography of the foveal avascu- lar zone in diabetic retinopathy. Graefes Arch Clin Exp Ophthalmol. 2016;254(6):1051-1058. 24. Hwang TS, Gao SS, Liu L, et. al. Automated quantification of capil- lary nonperfusion using optical coherence tomography angiography in diabetic retinopathy. JAMA Ophthalmol. 2016;134(4):367-373. 25. Cennamo G, Romano MR, Nicoletti G, Velotti N, de Crecchio G. Optical coherence tomography angiography versus fluorescein angiog- raphy in the diagnosis of ischaemic diabetic maculopathy. Acta Ophthal- mol. 2016. doi:10.1111/aos.13159. [Epub ahead of print] 26. Tan CS, Lim LW, Chow VS, et al. Optical coherence tomography an- giography evaluation of the parafoveal vasculature and its relationship with ocular factors. Invest Ophthalmol Vis Sci. 2016;57(9):OCT224- 234. 27. Samara WA, Say EA, Khoo CT, et al. Correlation of foveal avascular zone size with foveal morphology in normal eyes using optical coher- ence tomography angiography. Retina. 2015;35(11):2188-2195. 28. Carpineto P, Mastropasqua R, Marchini G, Toto L, Di Nicola M, Di Antonio L. Reproducibility and repeatability of foveal avascular zone measurements in healthy subjects by optical coherence tomography an- giography. Br J Ophthalmol. 2016;100(5):671-676. 29. Yu J, Jiang C, Wang X, et al. Macular perfusion in healthy Chinese: an optical coherence tomography angiogram study. Invest Ophthalmol Vis Sci. 2015;56(5):3212-3217. Colin S. Tan, MBBS, MMed (Ophth), FRCSEd (Ophth), can be reached at National Healthcare Group Eye Institute, Tan Tock Seng Hospital, 11 Jalan Tan Tock Seng, Singapore; email: Colintan_eye@yahoo.com.sg. Louis W. Lim, MBBS, can be reached at National Healthcare Group Eye Institute, Tan Tock Seng Hospital, 11 Jalan Tan Tock Seng, Singapore; email: limwy1987@gmail.com. SriniVas R. Sadda, MD, can be reached at Doheny Eye Institute, University of California Los Angeles, 1450 San Pablo St # 3000, Los Angeles, CA 90033; email: ssadda@doheny.org. Seenu M. Hariprasad, MD, can be reached at the Department of Ophthalmology and Visual Science, University of Chicago, 5841 S. Maryland Avenue, MC2114, Chicago, IL 60637; email: retina@uchicago.edu. Disclosures: Dr. Tan receives research funding from the National Medical Research Council Transition Award (NMRC/TA/0039/2015) and travel sup- port from Bayer, Heidelberg Engineering, and Novartis. Dr. Lim has no finan- cial disclosures. Dr. Sadda serves as a consultant for Allergan, Genentech, Roche, Regeneron, Alcon, Bausch & Lomb, Optos, and Carl Zeiss Meditec. He also receives research support from Allergan, Genentech, Optos, and Carl Zeiss Meditec. Drs. Tan, Lim, and Sadda have no financial or proprietary interests in the subject of this manuscript. Dr. Hariprasad is a consultant for Alcon, Allergan, Bayer, OD-OS, Clearside Biomedical, Ocular Therapeutix, Janssen, Leica, Spark, and Regeneron.

Articles in this issue

Links on this page

Archives of this issue

view archives of OSLI Retina - December 2016